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Abstract — Closed-form reliability functions for the well-
known dual homing configuration for the Fiber Distrib-
uted Data Interface (FDDI) are derived. The new reliabil-
ity functions are then compared to that of the dual ring
configuration, which again show that the dual homing net-
work is often more reliable than the dual ring network;
however, the model analysis also shows that dual homing
is recommended only if certain network parameter con-
straints are met.

1  Introduction 

Fiber Distributed Data Interface (FDDI) is a high-speed,
fiber-optic token network consisting of 2 counter-rotating
rings [1]. In addition to the fault tolerant level provided by
the dual rings, the reliability of an FDDI network is
enhanced by the use of station bypass switches or concen-
trators (CONs) [1, 2, 3]. A station equipped with a bypass
switch is switched out of the ring when the station experi-
ences a power failure. A CON facilitates the connection of
stations to the ring, and also switches out of the ring any
faulty station connected to it. The use of reliable CONs to
interconnect stations is the heart of the dual homing con-
figuration.

The simplest way to form an FDDI network of N dual
attach stations (DASs) is to interconnect the stations as
shown in Fig. 1. To use the reliability provided by 2
counter-rotating rings, DASs must be used in the FDDI
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Fig. 1 Dual ring network

network. The DASs can be any type of dual attach nodes
such as gateways, CONs, or servers. This simple configu-
ration (Fig. 1) is called the dual ring network. The reliabil-
ity function r(t) of the dual ring is given in [2]; suppose
that the optical bypass switches in the DASs are working
perfectly, then

  , (1)

where N is the number of DASs and f(t) is the reliability
function of each of the 2N links. A dual homing analogy of
(1) is derived in Section 2. Equation (1) is valid under the
assumption that the dual ring is reliable as long as the ring
is not segmented. Optical bypass switches in DASs switch
any station that has no power out of the ring; therefore, the
reliability of the ring is not affected unless the number of
activated optical bypass switches is excessive. However,
the loss caused by activated bypass switches affects both
the dual ring and the dual homed network almost equally.
This paper will not take the DAS faults into consideration.
Keep in mind that our analysis can be extended to incorpo-
rate the DAS faults into the model as is done in [2].

An alternative to the dual ring network is the dual hom-
ing network (Fig. 2). As expected, the reliability of the
dual homing network is improved in many cases by using
2 additional reliable CONs and 4(N + 1) fiber links; only
2N fiber links are needed in the dual ring network (Fig. 1).
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Fig. 2 Dual homing network
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Quantification of this improvement is given in Sections 2
and 3. In addition to providing further reliability, the dual
homing network is highly structured and hence facilitates
network management as well as network expansion/reduc-
tion; stations may be added to or removed from the net-
work without altering its structure.

The FDDI dual homing architecture has been proposed,
studied, and implemented for several years. The compari-
son between dual homing and other types of configura-
tions is reviewed in [3]. The availability of the path
between user and network backbone is discussed in [4] for
multiple level FDDI dual homing. Our goal is to derive
reliability results of the dual homing network in Fig. 2
(and its extensions in Fig. 3). We assume that all compo-
nents fail independently and that each CON is capable of
handling N DASs. Note that the link fault can be any fault
that causes the ring to wrap or to be segmented and can
include many types such as fiber cuts, severe dB loss, or
faulty station transceivers. This simple dual homing model
is fundamental for the following reasons:

• The model is the dual homing counterpart of the dual
ring shown in Fig. 1. Most FDDI backbone rings can be
transformed into either one of these 2 configurations
since FDDI standards require that the FDDI backbone
be connected by dual attach nodes.

• Many other FDDI configurations involving dual homing
can be analyzed by using this dual homing model as the
basic building block (Sections 2 and 3); with the use of
only one pair of CONs as shown in Fig. 2, the insight
can be gained more easily from this simple dual homed
network model.

• It is desirable to have a closed-form and simple formula,
which is a dual homing counterpart of (1) and can be
easily computed (Theorem 1).

• The model analysis shows that dual homing is beneficial
only if certain network parameter constraints are met
(Theorem 2).

2  Reliability Results for Dual Homing 
Network of Figure 2

In this section we derive the reliability function for the
dual homing network posed in Section 1; the derived for-
mula is illustrated by a numerical example. Then we state
a theorem about network parameter constraints for proper
dual homing implementations. A more general network
model is analyzed in Section 3.

     Let f(t), , c(t), and R(t) be reliability functions of
the link connecting DASs to the CONs, of the link con-
necting 2 CONs, of the CON, and of the dual homing net-
work respectively (Fig. 2). Furthermore, let N be the
number of DASs. The network is said to be operational
(i.e., reliable) if there is a communication path among all
DASs (i.e., the network is not segmented). 

Theorem 1

 

.

Proof: Let X be the random variable representing the oper-
ational time of the dual homing network shown in Fig. 2.
For each t > 0, consider 2 mutually exclusive and exhaus-
tive events A(t) and B(t) for the CONs: A(t) is the event
that 2 CONs are still operational at time t; and B(t) is the
event that only one CON is still operational at time t. Then 

  and

.      (2)

     Let A1(t) be the event that the root ring (i.e., the ring
connecting the 2 CONs) is not segmented before t. Then
from (1) with N = 2

                                             
.                        (3)

Let A2(t) be the event that the root ring is segmented
before t. Then from (3)

                                            

                   . (4)

Then  is computed as follows:
With the presence of the 2 operational CONs, effectively
the fiber links always fail in pairs with a new reliability
function  for each pair. Each DAS is disconnected
from the dual homed network when both pairs (each with
reliability function ) fail; that is, the reliability asso-
ciated with each DAS is 

 .

Since there are N such DASs,

.             (5)

Eq. (5) is used several times in the computation in the next
section.

f̂ t( )

R t( ) 2 f t( )2 f t( )4–[ ]( N 2 f t( )ˆ 2 f t( )ˆ 4–[ ]=

f t( )2N 1 f t( )ˆ 2–[ ] 2 ) c t( )2 f t( )2N2c t( ) 1 c t( )–[ ]++

Pr A t( ){ } c t( ) 2=

Pr B t( ){ } 2c t( ) 1 c t( )–[ ]=

Pr A1 t( ) A t( ){ } 2 f̂ t( ) 2 f̂ t( ) 4–=

Pr A2 t( ) A t( ){ } 1 Pr A1 t( ) A t( ){ }–=

1 f̂ t( ) 2–[ ] 2=

Pr X t> A t( ) A
1

t( ),{ }

f t( ) 2

f t( ) 2

1 1 f t( ) 2–[ ] 2– 2 f t( ) 2 f t( ) 4–=

Pr X t> A t( ) A1 t( ),{ } 2 f t( ) 2 f t( ) 4–[ ] N=
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For the case where the root ring is segmented, which
results in 2 identical rings of single attach stations (SASs),

 is computed as follows:  Note that
the second ring is no longer considered reliable because if
it is reliable, then all of the links at port B would have to
fail simultaneously; this is impossible because f(t) is asso-
ciated with a continuous random variable by assumption.
Port B links are always active unless there are faults asso-
ciated with them. Therefore,

                                  
   (6)

From (3) to (6) and the fact that

,

=

.                                    (7)

Note that

.      (8)

Then from (2), (7), (8) and the fact that   

 

,

.
Q.E.D.

Remark 1
                               
• Suppose that 2 perfect CONs with c(t) = 1 are used and

that the root ring is not segmented (i.e., ).
Then Theorem 1 becomes 

   , (9)

which must be an upper bound for the reliability func-
tion R(t) of the dual homing network. This upper

Pr X t> A t( ) A2 t( ),{ }

Pr X t A t( ) A2 t( ),>{ } f t( ) 2N=

Pr X t> A t( ){ }

Pr X t> A t( ) A
1

t( ),{ } Pr A
1

t( ) A t( ){ }=

Pr X t> A t( ) A2 t( ),{ } Pr A2 t( ) A t( ){ }+

Pr X t> A t( ){ }

2 f t( ) 2 f t( ) 4–[ ] N 2 f t( ) 2ˆ f t( ) 4ˆ–[ ]
f t( ) 2N 1 f̂ t( ) 2–[ ] 2+

Pr X t> B t( ){ } f t( ) 2N=

R t( ) Pr X t>{ } Pr X t> A t( ){ } Pr A t( ){ }= =

Pr X t> B t( ){ } Pr B t( ){ }+

R t( ) 2 f t( ) 2 f t( ) 4–( )( N 2 f̂ t( ) 2 f̂ t( ) 4–[ ]=

f t( ) 2N 1 f̂ t( ) 2–[ ] 2 ) c t( ) 2 f t( ) 2N2c t( ) 1 c t( )–[ ]++

f̂ t( ) 1=

R t( ) 2 f t( )2 f t( )4–[ ] N=

bound can be approached as close as desirable by using
2 very reliable CONs and 4 very reliable (e.g., very
short) links.

• The reliability function in Theorem 1 depends on , f,
and c; i.e., (here, for ease of writing,
the time variable t is suppressed). Then an upper bound
for the reliability function R, which is tighter (and
more complicated) than (9), is given by

.     (10)

Note that R(f,1,1) is the same as (9).

Example 1

Suppose that , where t is the
time measured, for instance, in days. Thus the mean time
to failure (MTTF) of both the CON and fiber link is

 = 1000 days. Then the reliability of the dual ring
as well as the dual homing network for various values of t
and N (the number of DASs) is given in Table 1 (M is the
number of CON pairs, M = 1 in this example).

 From Table 1, for small network sizes (e.g., N = 5), the
dual ring network is slightly more reliable than the dual
homing network since it is less likely that the small dual
ring will be segmented. For larger values of N (N > 9),
dual homing consistently becomes more reliable than dual
ring. Finally, as expected, the reliability upper bound value
for dual homing is the greatest among the 3 values. The
following theorem confirms the superiority of dual hom-
ing [see (9)] to dual ring [see (1)] when dual homing is
properly implemented [i.e., when  and the reliability
upper bound (9) is approached].

Theorem 2

(a)             

for   and all   . That is, a small dual
ring network is more reliable than a small dual homing
network with the same number of DASs N = 1, 2, 3 [see
(9)].

(b)             

for all   and all  . That is, if 
and , dual homing is more reliable than dual ring for

 and  [see (9)].

f̂
R R f f̂ c, ,( )=

R min R( 1 f̂ c, ,( ) R f 1 c, ,( ) R f f̂ 1, ,( ),,,≤
R f 1 1, ,( ) R 1 f̂ 1, ,( ) R 1 1 c, ,( ) ),,

f̂ t( ) c t( ) f t( ) e 0.001t–= = =

1 0.001⁄

N 4≥

N f 2N 2– N 1–( ) f 2N– 2 f 2 f 4–( ) N>

N 1 2 3, ,= f 0 1,( )∈

N f 2N 2– N 1–( ) f 2N– 2 f 2 f 4–( ) N<

N 4≥ f 2[ 2 1 ),⁄∈ c 1=
f̂ 1=

N 4≥ f 2 2⁄≥



4 

Proof: (a) is true for . For , observe that
, which can be written after some

algebra as 

. 

Therefore (a) is also true when . 

 When , (b) becomes ,
which can be written after some algebra as

;

however,  when  or
. Therefore (b) is true at .

Note that numerical computation shows that (b) is also
true when  if  and is false if

. Then (b) is proved for all  and all
 by induction as follows. Suppose that (b) is true

at . Then since

 , 

it can be shown after some algebra that

; 

therefore, from induction hypothesis ((b)),

.

Thus (b) is also true at ; hence the induction proof is
completed.    Q.E.D.    

Theorem 2 shows that dual homing is often more reli-
able than dual ring; however, to better use the dual homing
technique, the following should be met:

• the number of DASs N must be at least 4

• the link reliability f(t) is at least 

• the ring comprising 2 CONs must be reliable.        

N 1 2,= N 3=
3 1 f 2–( ) 3 f 2 1 f 2–( ) 3>

3 f 4 2 f 6– 2 f 2 f 4–( ) 3>

N 3=

N 4= 4 f 6 3 f 8– 2 f 2 f 4–( ) 4<

0 1 f 2–( ) 2 4– 11 f 2 6 f 4–+( ) f 6+[ ]<

4– 11 f 2 6 f 4–+ 0  ≥ f 2 1 2⁄≥
f 2 2⁄≥ 0.7071…= N 4=

N 4= f 0.69183=
f 0.69182= N 4≥
f 2 2⁄≥

N

1 f 2–( ) 2 1 2 f 2– f 4+ 0>=

N f 2N 2– N 1–( ) f 2N–[ ] 2 f 2 f 4–( )
N 1+( ) f 2N N f 2N 2+–>

2 f 2 f 4–( ) N 1+ N 1+( ) f 2N N f 2N 2+–>

N 1+( ) f 2 N 1+( ) 2– N f 2 N 1+( )–=

N 1+

2 2⁄ .7071…=

Table 1 – Reliability of Dual Homing and Dual Ring Network

1 computed from (9): reliability upper bound for dual homing net-
work

2 computed from Theorem 1: reliability for dual homing network
3 computed from (1): reliability for dual ring network

                                                  

3  An Extension

In this section we analyze the dual homing network shown
in Fig. 3, which is a natural extension of the network of
Fig. 2. Let M be the number of CON pairs; as before, each
CON can serve N DASs and has reliability function c(t).
The ring consisting of 2M CONs is called the root ring.

M = 1 t = 5 t = 10 t = 50

N = 5 0.99951

0.99902

0.99903

0.9980

0.9961

0.9962

0.9555

0.9200

0.9255

N = 10 0.9990

0.9980

0.9958

0.9961

0.9925

0.9841

0.9130

0.8577

0.7548

N = 15 0.9985

0.9971

0.9905

0.9941

0.9890

0.9653

0.8724

0.8062

0.5751

N = 20 0.9980

0.9962

0.9833

0.9922

0.9857

0.9411

0.8336

0.7621

0.4200

N = 21 0.9979

0.9960

0.9817

0.9918

0.9850

0.9358

0.8261

0.7531

0.3929

N = 30 0.9970

0.9945

0.9642

0.9883

0.9795

0.8814

0.7612

0.6879

0.2069

N = 39 0.9961

0.9929

0.9424

0.9848

0.9742

0.8196

0.7013

0.6309

0.1033

N = 40 0.9960

0.9928

0.9398

0.9844

0.9737

0.8124

0.6950

0.6251

0.0954

N = 48 0.9953

0.9915

0.9173

0.9814

0.9692

0.7542

0.6462

0.5802

0.0498

N = 50 0.9951

0.9912

0.9113

0.9806

0.9683

0.7395

0.6345

0.5697

0.0422
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Furthermore, each of the (fiber) links used for intercon-
necting 2M CONs has reliability function , and  is
the reliability function for each of 4MN links used for con-
necting DASs to CONs. All components are assumed to
fail independently. Other definitions from the previous
section such as X and R(t) (Theorem 1) are also carried
into this section. Note that the number of DASs now
becomes MN. 

     Then the reliability function R(t) of the dual homing
network shown in Fig. 3 is 

 

        

                 .  (11)

Each of the 2 unknown components in the above sum-
mation is computed as follows:

First let L be the number of working CON pairs. Then
from the analysis in Section 2 (see (5))

                  

 and

                                       
.  

Therefore from the above 2 equations,

f̂ t( ) f t( )

f̂ t( )

BA

M M M M

BA

M M M M

BA

BA BA BA

c(t)

f(t)

BA

M M M M

BA

M M M M

BA

BA BA BA

c(t)

f(t)

CON(1,1) CON(1,2) CON(M,1) CON(M,2)

DAS DAS DAS DAS DAS DAS DAS DAS

...

Fig. 3 Extended dual homing network

(M,1) (M,2) (M,3) (M,N)(1,N)(1,3)(1,2)(1,1)

Pr X t>{ } Pr X t> the root ring is not segmented{ }=

× Pr the root ring is not segmented{ }

Pr X t the root ring is segmented,>{ }+

Pr X t> L = M m  the root ring is not segmented,–{ }

2 f t( ) 2 f t( ) 4–[ ] N( ) M m– f t( ) 2mN=

Pr L = M m–{ } M
m 

 
c t( ) 2 M m–( ) 2c t( ) 1 c t( )–[ ]( ) m=

.        

     Letting N = 2M in (1) gives

 

.                 

     From the above 2 equations,

 

     . (12)

Then by the same argument used in the previous section,
an upper bound for the reliability function R(t) is

. (13)

Note that Remark 1 and Theorem 2 remain valid, with
slight modification, in this case (see (9)). 

The probability  is
computed as follows, depending on 2 cases:  and

.

Case 1: . Then there are 4 CONs. Given the fact
that X > t and the root ring is segmented, there are only 2
types of ring segmentations:

• The ring is segmented evenly resulting in 2 identical and
parallel rings: the first ring consists of CON(1,1) and
CON(2,1), and the second ring consists of CON(1,2)
and CON(2,2). Note that the second ring is no longer
considered reliable because if it is reliable, then all of
the links at port B would have to fail simultaneously,
which is an impossible event as f(t) is associated with a
continuous random variable. Port B links are always
active unless there are faults associated with them.

• The ring is segmented unevenly resulting in 2 different
rings: one ring has only one CON and the other ring has
3 CONs.

Pr X t> the root ring is not segmented{ }

2 f t( ) 2 f t( ) 4–[ ] N( ) M m– f t( ) 2mN
m 0=
M∑=

× M
m 

  c t( ) 2 M m–( ) 2c t( ) 1 c t( )–[ ]( ) m

Pr the root ring is not segmented{ }

1 2M–( ) f̂ t( ) 4M 2M f̂ t( ) 4M 2–+=

Pr X t> the root ring is not segmented{ }

Pr the root ring is not segmented{ }×

2 f t( ) 2 f t( ) 4–[ ] N( ) M m– f t( ) 2mN
m 0=
M∑=

M
m 

  c t( ) 2 M m–( ) 2c t( ) 1 c t( )–[ ]( ) m×

1 2M–( ) f̂ t( ) 4M 2M f̂ t( ) 4M 2–+[ ]×

R t( ) 2 f t( ) 2 f t( ) 4–[ ] MN≤

Pr X t  the root ring is segmented,>{ }
M 2=

M 2≠

M 2=
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First note that for L = 0,

     = 

.

     Similarly,

. (14)

Summing the above 2 equations gives

. (15)

For L = 1,

        

and

=

Pr X t L = 0  the root ring is segmented unevenly,,>{ }

Pr X t> L = 0, the root ring is segmented unevenly{ }=

Pr the root ring is segmented unevenly | L  = 0{ }×

× Pr L  = 0 { }  

4 f t( ) 4N2c t( ) 2 1 c t( )–[ ] 2 4 1 f̂ t( )–( ) 2 f̂ t( ) 6(

4 1 f̂ t( )–( ) 3 f̂ t( ) 5 f̂ t( ) 4 1 f̂ t( )–( ) 4 )+ +

Pr X t L = 0 the root ring is segmented evenly,,>{ }

Pr X t> L  = 0, the root ring is segmented evenly{ }=

× Pr L = 0 { }

Pr the root ring is segmented evenly | L = 0{ }×

f t( ) 4N2c t( ) 2 1 c t( )–[ ] 2 4 1 f̂ t( )–( ) 2 f̂ t( ) 6(=

4 1 f̂ t( )–( ) 3 f̂ t( ) 5 f̂ t( ) 4 1 f̂ t( )–( ) 4+ )+

Pr X t L = 0 the root ring is segmented,,>{ }

10 f t( ) 4Nc t( ) 2 1 c t( )–[ ] 2 4 1 f̂ t( )–( ) 2 f̂ t( ) 6(=

4 1 f̂ t( )–( ) 3 f̂ t( ) 5 f̂ t( ) 4 1 f̂ t( )–( ) 4+ )+

Pr X t L = 1 the root ring is segmented evenly,,>{ }

f t( ) 4N4c t( ) 3 1 c t( )–[ ] 4 1 f̂ t( )–( ) 2 f̂ t( ) 6(=

4 1 f̂ t( )–( ) 3 f̂ t( ) 5 f̂ t( ) 4 1 f̂ t( )–( ) 4+ )+

Pr X t L = 1 the root ring is segmented unevenly,,>{ }

2 f t( ) 2 f t( ) 4–[ ] N f t( ) 2N( ) 4c t( ) 3 1 c t( )–[ ] ×

4 1 f̂ t( )–( ) 2 f̂ t( ) 6 4 1 f̂ t( )–( ) 3 f̂ t( ) 5+ +[

.

Then summing the above 2 equations gives

          . (16)

For L = 2,

           

and

.

Hence by summing the above 2 equations,

. (17)

Then by summing (15), (16) and (17):

. (18)

f̂ t( ) 4 1 f̂ t( )–( ) 4 ]

Pr X t L = 1, the root ring is segmented,>{ }

2 f t( ) 2 f t( ) 4–[ ] N f t( ) 2N f t( ) 4N+( )=

4c t( ) 3 1 c t( )–[ ] 4 1 f̂ t( )–( ) 2 f̂ t( ) 6(×

4 1 f̂ t( )–( ) 3 f̂ t( ) 5 f̂ t( ) 4 1 f̂ t( )–( ) 4 )+ +

Pr X t L = 2, the root ring is segmented evenly,>{ }

f t( ) 4Nc t( ) 4 4 1 f̂ t( )–( ) 2 f̂ t( ) 6(=

4 1 f̂ t( )–( ) 3 f̂ t( ) 5 f̂ t( ) 4 1 f̂ t( )–( ) 4+ )+

P X t L = 2, the root ring is segmented unevenly,>{ }

4 2 f t( )
2

f– t( )
4

[ ]
N

f t( )
2N

c t( ) 4 4 1 f̂ t( )–( ) 2 f̂ t( ) 6(=

4 1 f̂ t( )–( ) 3 f̂ t( ) 5 f̂ t( ) 4 1 f̂ t( )–( ) 4+ + )

Pr X t L = 2, the root ring is segmented,>{ }

4 2 f t( ) 2 f t( ) 4–[ ] N f t( ) 2N f t( ) 4N+( )=

c t( ) 4 4 1 f̂ t( )–( ) 2 f̂ t( ) 6(×

4 1 f̂ t( )–( ) 3 f̂ t( ) 5 f̂ t( ) 4 1 f̂ t( )–( ) 4 )+ +

Pr X t the root ring is segmented,>{ }

Pr X t L = i, the root ring is segmented,>{ }  
i 0=
2∑=

4 1 f̂ t( )–( ) 2 f̂ t( ) 6 4 1 f̂ t( )–( ) 3 f̂ t( ) 5+(=

f̂ t( ) 4 1 f̂ t( )–( ) 4 ) × 10 f t( ) 4Nc t( ) 2 1 c t( )–[ ] 2{+

2 f t( ) 2 f t( ) 4–[ ] N f t( ) 2N f t( ) 4N+( ) 4c t( ) 3 1 c t( )–[ ]+

4 2 f t( ) 2 f t( ) 4–[ ] N f t( ) 2N f t( ) 4N+( ) c t( ) 4 }+
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Case 2: . Note that the necessary condition for the
segmented network to be reliable in this case is that: At
most one CON is isolated. Then it can be shown that

. (19)

Combining (11), (12), (18), and (19) yields Theorem 3,
which is an extension of Theorem 1.

Theorem 3

,

where ,
which is given by (18) if , and by (19) if .

Note that Theorem 3 reduces to Theorem 1 when M = 1.
Theorem 2 remains valid if N DASs, which were used in
that theorem, are replaced by MN DASs in this section.

Example 2

Suppose now that Example 1 is extended to include 6
CONs (i.e., M = 3). Then the reliability values computed at
t = 5, 10, and 50 days are given in Table 2.  

Note that, by comparing Table 2 with Table 1, the dual
homing network with M = 1 is more reliable than that with
M = 3 even though their reliability upper bounds (9) and
(13) are equal.

M 2≠

Pr X t the root ring is segmented,>{ } 

 = Pr X t, only one CON is isolated>{ }

2 f t( ) 2 f t( ) 4–[ ] N( ) M m– 1– f t( ) 2Nm
m 0=
M∑=

M
m 

 
c t( ) 2 M m–( ) 2c t( ) 1 c t( )–( )[ ] m×

4(× 1 f̂ t( )–( ) 2 f̂ t( ) 4M 2– 4 1 f̂ t( )–( ) 3 f̂ t( ) 4M 3–+

1 f̂ t( )–( ) 4 f̂ t( ) 4M 4– )+

f t( ) 2N M m–( ) m 2 f t( ) 2 f t( ) 4–[ ] N+[ ]×

R t( ) 2 f t( )2 f t( )4–[ ] N( ) M m– f t( )2mN

m 0=

M

∑=

M
m 

  c t( )2 M m–( ) 2c t( ) 1 c t( )–[ ]( ) m×

1 2M–( ) f t( )ˆ 4M 2M f̂ t( )4M 2–+( ) S M t,( )+×

S M t,( ) Pr X t the root ring is segmented,>{ }=
M 2= M 2≠

Table 2 – Reliability of Dual Ring and Extended Dual Homing 
Network

1 computed from (13): upper bound for dual homing network

2 computed from Theorem 3: extended dual homing network

4  Conclusions

Closed form reliability functions for the FDDI dual hom-
ing networks are derived (Theorems 1 and 3). Dual hom-
ing is often more reliable than dual ring; however, dual
homing technique is beneficial only if the following condi-
tions are met (Theorem 2):

• the number of DASs must be at least 4

• the link reliability should be at least 

• the root ring comprising CONs must be reliable

• the number of CON pairs on the root ring should be
as small as possible.
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M = 3 t = 5 t = 10 t = 50

MN = 21

(N = 7)

0.99791

0.99472

0.9918

0.9795

0.8261

0.6492

MN = 39

(N = 13)

0.9961

0.9913

0.9848

0.9669

0.7013

0.5137

MN = 48

(N = 16)

0.9953

0.9897

0.9814

0.9609       

0.6462

0.4624
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